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Linear regression with one
predictor
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Regression analysis
What is regression?

The term "regression" was used by Francis Galton in
his 1886 paper "Regression towards mediocrity in
hereditary stature"
regression toward the mean (biological phenomenon):
the heights of descendants of tall ancestors tend to
regress down towards a normal average.

What is regression analysis?

a statistical method that allows you to examine the
relationship between two or more variables of interest
to sort out which of those variables does indeed have
an impact
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Regression analysis: An example
Why do a regression analysis?

To predict the value of a variable of interest

To make inference about the relationship between
variables

An example: Does militarization affect economic
development?

To answer this question, we will analyze the relationship
between militarization and economic development
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Regression analysis: An example
How to measure militarization and economic
development?

We use proxy measurement:
militarization: military expenditures as % of GDP
economic development: GDP per capita

We can obtain the data from World Bank's WDI

Variables:

gdppc: GDP per capita (log)

miliper: military expenditure as % of GDP
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Data and packages
library(tidyverse)
library(broom)
library(modelr)
library(knitr)
library(labelled) #add variable labels
library(cowplot) #plot_grid() function
library(car) # model assumption check
load(url("https://cc458.github.io/files/IRdata.RData"))
dim(IRdata)

## [1] 3687   13

# we will use the 2015 data for now

df <- IRdata %>% 
      filter(year == 2015)
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glimpse of the data

glimpse(df)

## Rows: 148
## Columns: 13
## $ ccode        <int> 2, 20, 40, 41, 42, 51, 52, 70, 90, 91, 92, 93, 94, 95, 1
## $ country_name <chr> "United States of America", "Canada", "Cuba", "Haiti", "
## $ year         <int> 2015, 2015, 2015, 2015, 2015, 2015, 2015, 2015, 2015, 20
## $ pop          <dbl> 19.58663, 17.39482, 16.25450, 16.18679, 16.16959, 14.870
## $ gdppc        <dbl> 10.941465, 10.676294, 8.936333, 6.703858, 8.774850, 8.50
## $ gdpgrowth    <dbl> 2.86158703, 0.94167586, 4.43833359, 1.21121834, 7.040936
## $ miliper      <dbl> 0.60870042, 0.29409085, 0.89154068, 0.00249989, 0.893912
## $ state_vio    <dbl> 14, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 28, 0, 0, 0, 
## $ oneside_vio  <dbl> 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0,
## $ vio          <dbl> 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1,
## $ polity2      <int> 10, 10, -7, 0, 8, 9, 10, 8, 8, 7, 8, 9, 10, 9, 7, 7, 5, 
## $ polcomp      <int> 10, 10, 1, -77, 9, 9, 10, 9, 8, 9, 9, 9, 10, 10, 7, 8, 8
## $ dem          <dbl> 3, 3, 1, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 3,

8 / 79



p1 <- ggplot(data = df ,mapping = aes(x = gdppc)) +
  geom_histogram()
p2 <- ggplot(data = df, mapping = aes(x = miliper)) +
  geom_histogram()
plot_grid(p1, p2, ncol = 2)
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p1 <- ggplot(data = df, aes(x = miliper, y = gdppc)) + geom_point() + 
  labs(title = "GDP per capita vs. military expenditures")
p2 <- ggplot(data = df, mapping = aes(x = miliper, y = gdppc)) + geom_point() 
  geom_smooth(method = "lm", se = FALSE) +
  labs(title = "GDP per capita vs. military expenditures")
plot_grid(p1, p2, ncol = 2)
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Terminology

GDP per capita(gdppc) is the response variable 

variable whose variation we want to understand
and/or variable we wish to predict
also known as dependent, outcome, target, output
variable (因变量、结果变量、目标变量，输出变量
等)

Military expenditures(miliper) is the predictor variable

variable used to account for variation in the response
also known as independent, explanatory, input
variable(自变量、解释变量、输⼊变量)

(Y )

(X)
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Model

We want to estimate . How do we do it? A general form of
the model:

: quantitative response variable

: predictor variables

: fixed but unknown function

systematic information  provides about 

: random error term with mean 0 that is independent of

GDP per capita = f(military expenditures) + ϵ

f

Y = f(X) + ϵ

Y

X = (X1, X2, … , Xp)

f

X Y

ϵ
X 12 / 79



How to estimate f?
In general, we will use the following steps to estimate 

Choose the functional form of , i.e. choose the
appropriate model given the data

Ex: f is a linear model

Use the data to fit the model, i.e. estimate the model
parameters

Ex: Use a method to estimate the model parameters

f

f

f(X) = β0 + β1X1 + ⋯ + βpXp + ϵ

β0, β1, … , βp 13 / 79



Why estimate f?
Suppose we have the model

There are two types of questions we may wish to answer
using our model:

Prediction: What is the expected  given particular values
of ? - Ex: What is the expected GDP per
capita for a country whoes military expenditure accounts
for 5% of its total GDP?

Inference: What is the relationship between  and .
How does  change as a function of ? - Ex: How much
can we expect GDP per capita to change for each
additional percentage in the military expenditure?

GDP per capita = β0 + β1 × military expenditures + ϵ

Y
X1, X2, … , Xp

X Y
Y X
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Linear regression (线性回归)

There is some true relationship between  and  that
exists in the population

If  is approximated by a linear function, then we can
write the relationship as

We'll use statistical inference to determine if the
relationship we observe in the data is statistically
significant or if it's due to random chance.

X Y

Y = f(X) + ϵ

f

Y = β0 + β1X + ϵ
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Regression model: 

For any fixed ,  follows a normal distribution with a
standard deviation of 

: the standard deviation of  as a function of ;
Assumption:  is equal for all values of  (equal variance
of )

Y = β0 + β1X + ϵ

Y |X ∼ N(β0 + β1X, σ2)

x y
σ

σ Y X
σ X

y 16 / 79



Linear regression model

For a single observation 

We want to use the  observations 
to estimate  and .

We'll use least-squares regression(最小⼆乘法) estimates.

The Least Squares Regression line is the line that
makes the vertical distance from the data points to the
regression line as small as possible. It's called a "least
squares" because the best line of fit is one that
minimizes the variance (the sum of squares of the
errors)

Y |X ∼ N(β0 + β1X, σ2)

(xi, yi)

yi = β0 + β1xi + ϵi ϵi ∼ N(0, σ2)

n (x1, y1), … , (xn, yn)
β0 β1
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Residuals

The residual is the difference between the observed and
predicted values.
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Residual sum of squares

The residual for the  observation is

The residual sum of squares is

The least-squares regression approach chooses
coefficients  and  to minimize RSS.

Note the difference between:  and

ith

ei = yi − ŷ i = yi − (β̂0 + β̂1xi)

RSS = e2
1 + e2

2 + ⋯ + e2
n

β̂0 β̂1

Y = β0 + β1X + ϵ

Ŷ = β̂0 + ^β1X
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points x y
point 1 1 6
point 2 2 5
point 3 3 7
point 4 4 10

A toy example for linear least squares by hand: I

Four  data point: , , , and 

We hope to find a line  that best fits these
four points.

(x, y) (1, 6) (2, 5) (3, 7) (4, 10)

Y = β1 + β2X
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A toy example for linear least squares by hand: II
That is, to find  and  to approximately solve the overdetermined linear
system:

The residual, at each point, between the best curve fit and the data is the
difference between the right- and left-hand sides of the equations. The least
squares approach to solving this problem is to try to make the sum of the
squares of these residuals as small as possible;

that is, to find the minimum of the function:

β1 β2

β1 + 1β2 + ϵ1 = 6

β1 + 2β2 + ϵ2 = 5

β1 + 3β2 + ϵ3 = 7

β1 + 4β2 + ϵ4 = 10

RSS = e2
1 + e2

2 + ⋯ + e2
n

S(β1, β2) = [6 − (β1 + 1β2)]2 + [5 − (β1 + 2β2)]2 + [7 − (β1 + 3β2)]2 + [10 − β1 + 4β2

= 4β2
1 + 30β2

2 + 20β1β2 − 56β1 − 154β2 + 210
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A toy example for linear least squares by hand: III

The minimum is determined by calculating the partial derivatives(偏导数) of
 with respect to  and  and setting them to zero ("with the others held

constant"):

solve a system of two equations:

; , and 

Minimum residuals:

S(β1, β2) = 4β2
1 + 30β2

2 + 20β1β2 − 56β1 − 154β2 + 210

S(β1, β2) β1 β2

= 4 ∗ 2β1 + 0 + 20β2 ∗ 1 − 56 − 0 + 0 = 8β1 + 20β2 − 56 = 0

= 0 + 30 ∗ 2β2 + 20β1 − 0 − 154 + 0 = 60β2 + 20β1 − 154 = 0

∂S

∂β1

∂S

∂β2

8β1 + 20β2 − 56 = 0

20β1 + 60β2 − 154 = 0

β1 = 3.5 β2 = 1.4 y = 3.5 + 1.4 × x

S(β1, β2) = S(β1 = 3.5, β2 = 1, 5) = 1.12 + (−1.3)2 + (−0.7)2 + 0.92 = 4.2
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Estimating coe�icients of least squares models

Slope:

such that  is the correlation between  and .

Intercept: 

β̂1 = = r

n

∑
i=1

(xi − x̄)(yi − ȳ)

n

∑
i=1

(xi − x̄)2

sy

sx

r x y

β̂0 = ȳ − β̂1x̄
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How to find the linear regression line by
hand?
Table: Data

ccode gdppc miliper Xbar Ybar X-Xbar Y-Ybar (X-Xbar)
(Y-Ybar) Xb

2 10.941465 0.6087004 0.6646869 8.514311 -0.0559865 2.4271536 -0.1358877 0.00

20 10.676293 0.2940909 0.6646869 8.514311 -0.3705960 2.1619822 -0.8012220 0.13

40 8.936333 0.8915407 0.6646869 8.514311 0.2268538 0.4220212 0.0957371 0.05

41 6.703858 0.0024999 0.6646869 8.514311 -0.6621870 -1.8104530 1.1988584 0.43

42 8.774850 0.8939124 0.6646869 8.514311 0.2292256 0.2605384 0.0597221 0.05

51 8.505290 0.2109311 0.6646869 8.514311 -0.4537558 -0.0090212 0.0040934 0.20

β̂1 = ; β̂0 = ȳ − β̂1x̄

n

∑
i=1

(xi − x̄)(yi − ȳ)

n

∑
i=1

(xi − x̄)2
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sum(ols$`(X-Xbar)(Y-Ybar)`);sum(ols$`(X-Xbar)^2`)

## [1] 20.06906

## [1] 25.09528

(beta_1 <- sum(ols$`(X-Xbar)(Y-Ybar)`)/sum(ols$`(X-Xbar)^2`))

## [1] 0.7997146

(beta_0 <- mean(ols$gdppc) - beta_1*mean(ols$miliper))

## [1] 7.982752
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Least squares model

y <- df$gdppc; x <- df$miliper
r <- cor(x, y)
(beta_1 <- r*(sd(y)/sd(x)))

## [1] 0.7997146

(beta_0 <- mean(y) - beta_1 * mean(x))

## [1] 7.982752

β̂1 = = r

n

∑
i=1

(xi − x̄)(yi − ȳ)

n

∑
i=1

(xi − x̄)2

sy

sx

β̂0 = ȳ − β̂1x̄
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Fit a least squares model with R

In R, we use the lm() function to fit a least-squares model

lm(formula, data, subset, weights, na.action,
   method = "qr", model = TRUE, x = FALSE, y = FALSE, qr = TRUE,
   singular.ok = TRUE, contrasts = NULL, offset, ...)

formula: y ~ x

model <- lm(gdppc ~ miliper, data = df)
tidy(model) %>% kable(format = "markdown", digits = 3)

term estimate std.error statistic p.value
(Intercept) 7.983 0.225 35.456 0.000
miliper 0.800 0.288 2.777 0.006

^GDP per capita = 7.983 + 0.800 × military expenditures27 / 79
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Interpreting slope & intercept

Slope: Increase in the mean response for every one unit
increase in the predictor variable

Intercept: Mean response when the explanatory variable
equals 0
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Coe�icient of determination, R-squared

The coefficient of determination, denoted , is a statistical
measure that represents the proportion of the variance for a
dependent variable that's explained by an independent
variable or variables in a regression model.

where  is the predicted value of  (or fitted value of )

(r_squared = 1- sum((df$gdppc - model$fitted.values)^2)/sum((df$gdppc - mea

## [1] 0.05018082

As the number of independent variables increases, the 
never deceases

We use the adjusted  instead, which penalizes the

R2

R2 = 1 − = 1 −
sum of squares of residuals (RSS)

total sum of squares(TSS)

∑(yi − ŷi)2

∑(yi − ȳ)2

ŷi yi yi

R2

R2 30 / 79



Nonsensical intercept

Sometimes it doesn't make sense to interpret the intercept

When predictor variable doesn't take values close to 0
When the intercept is negative even though the
response variable should always be positive

The intercept helps the line fit the data as closely as
possible

It is fine to have a nonsensical intercept if it helps the
model give better overall predictions
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Export regression outcome: table
library(stargazer)
stargazer(model, type = "html", title="Regression Results", single.row=TRUE, 

Regression Results

Dependent variable:

gdppc

miliper 0.800*** (0.235, 1.364)

Constant 7.983*** (7.541, 8.424)

Observations 148

R2 0.050

Adjusted R2 0.044

Residual Std. Error 1.442 (df = 146)

F Statistic 7.713*** (df = 1; 146)

Note: *p<0.1; **p<0.05; ***p<0.01
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Export regression outcome: graph

library(dotwhisker)
dwplot(list(model), conf.level = .95, show_intercept = TRUE, 
       model_name = "model 1",) + theme_bw() + ggtitle("Coefficient Plot")
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Multiple Linear Regression
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Questions

What is the relationship between the characteristics of a
country and economic development?

Given its characteristics, what is the expected level of
economic development?
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Variables

Predictors

miliper: military expenditures as % of GDP

pop: Number of total population(log)

polity2: regime type scores [-10, 10]

vio: whether there was political violence

Response

gdppc: log of GDP per capita (in U.S. dollars)
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EDA: Response variable
ggplot(data = df, aes(x = gdppc)) + geom_histogram() + 
  labs(title = "Distribution of GDP per capita", x = "log of GDP per capita")
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EDA: Predictor variables
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Correlation matrix of independent variables
library(ggcorrplot)
df %>% dplyr::select(polity2, vio, pop, miliper) %>% 
  cor(use = "pairwise") %>%
  round(1) %>% 
  ggcorrplot(., type = "lower", lab = T, show.legend = F)
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EDA: Response vs. Predictors
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What is a disadvantage to fitting a separate model for each
predictor variable?
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Multiple regression model

We will calculate a multiple linear regression model with the
following form:

Similar to simple linear regression, this model assumes that
at each combination of the predictor variables, the values
GDP per capita follow a Normal distribution

GDP per capita = β0 + β1polity2 + β2violence + β3population

+ β4military expenditures + ϵ
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Regression model

Recall: The simple linear regression model assumes

Similarly: The multiple linear regression model assumes

For a given observation 

y|x ∼ N(β0 + β1x, σ2)

y|x1, x2, … , xp ∼ N(β0 + β1x1 + β2x2 + ⋯ + βpxp, σ2)

(xi1, xi2 … , xiP , yi)

yi = β0 + β1xi1 + β2xi2 + ⋯ + βpxip + ϵi ϵi ∼ N(0, σ2)
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Regression model

At any combination of , the true mean value of  is

We will use multiple linear regression to estimate the
mean  for any combination of 

x′s y

μy = β0 + β1x1 + β2x2 + ⋯ + βpxp

y x′s

ŷ = β̂0 + β̂1x1 + β̂2x2 + ⋯ + β̂pxp
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Regression output I
model2 <- lm(gdppc ~ polity2 + vio + pop + miliper, data = df)

tidy(model2, conf.int = TRUE) %>%
  kable(format = "markdown", digits = 3)

term estimate std.error statistic p.value conf.low conf.high

(Intercept) 5.987 1.393 4.297 0.000 3.233 8.741

polity2 0.063 0.019 3.249 0.001 0.025 0.101

vio -1.112 0.302 -3.685 0.000 -1.708 -0.516

pop 0.106 0.085 1.255 0.211 -0.061 0.273

miliper 1.179 0.277 4.250 0.000 0.630 1.727
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Regression output II: table
stargazer(model, model2, type = "html", title="Regression Results", 
          single.row=TRUE, ci=TRUE, ci.level=0.95)

Regression Results

Dependent variable:

gdppc

(1) (2)

polity2 0.063*** (0.025, 0.101)

vio -1.112*** (-1.703, -0.521)

pop 0.106 (-0.060, 0.272)

miliper 0.800*** (0.235, 1.364) 1.179*** (0.635, 1.722)

Constant 7.983*** (7.541, 8.424) 5.987*** (3.256, 8.717)

Observations 148 148

R2 0.050 0.212

Adjusted R2 0.044 0.190

Residual Std. Error 1.442 (df = 146) 1.327 (df = 143)

F Statistic 7.713*** (df = 1; 146) 9.635*** (df = 4; 143) 47 / 79



Regression output II: graph
dwplot(list(model, model2), conf.level = .95, show_intercept = TRUE) + 
  theme_bw() + ggtitle("Coefficient Plot")
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Interpreting 

An estimated coefficient  is the expected change in  to
change when  increases by one unit holding the values
of all other predictor variables constant.

Example:
The estimated coefficient for polity2 is 0.063. This
means for each additional point of polity score, we
expect the log of of GDP per capita to increase by
0.063 (that is, exp(0.063) =1.065027), on average,
holding all other predictor variables constant.

β̂j

β̂j y

xj
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Hypothesis tests for 

We want to test whether a particular coefficient has a
value of 0 in the population, given all other variables in
the model:

The test statistic reported in R is the following:

Calculate the p-value using the  distribution with
 degrees of freedom, where  is the number of

terms in the model (not including the intercept).

β̂j

H0 : βj = 0

Ha : βj ≠ 0

test statistic = t =
β̂j − 0

SE(β̂j)

t
n − p − 1 p
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Inference in multiple linear models
 has a  Student distribution

We can make inference for multiple linear constrains:
 through  test

 where  is the complete model, and  is the

restricted model

anova(model2, model)

## Analysis of Variance Table
## 
## Model 1: gdppc ~ polity2 + vio + pop + miliper
## Model 2: gdppc ~ miliper
##   Res.Df    RSS Df Sum of Sq      F    Pr(>F)
## 1    143 251.93                              
## 2    146 303.78 -3   -51.852 9.8107 6.313e-06

βj t

H0 : β1 = β2 =. . . βj = 0 F

F =
(RSSr−RSSc)

RSSc/(n−k−1)
c r
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Confidence interval for 

The confidence interval for 

where  follows a  distribution with with 
degrees of freedom

General Interpretation: We are  confident that the
interval lower bound to upper bound contains the
population coefficient of . Therefore, for every one unit
increase in , we expect  to change by LB to UB units,
holding all else constant.

βj

βj

β̂j ± t∗SE(β̂j)

t∗ t (n − p − 1)

C

xj

xj y
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Confidence interval for political violence

Interpret the 95% confidence interval for the coefficient of
vio.

term estimate std.error statistic p.value conf.low conf.hig
(Intercept) 5.987 1.393 4.297 0.000 3.233 8.74
polity2 0.063 0.019 3.249 0.001 0.025 0.10
vio -1.112 0.302 -3.685 0.000 -1.708 -0.51
pop 0.106 0.085 1.255 0.211 -0.061 0.27
miliper 1.179 0.277 4.250 0.000 0.630 1.72
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Caution: Large sample sizes

If the sample size is large enough, the test will likely result in
rejecting  even  has a very small effect on 

Consider the practical significance of the result not just
the statistical significance

Use the confidence interval to draw conclusions instead of
p-values

H0 : βj = 0 xj y
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Caution: Small sample sizes

If the sample size is small, there may not be enough evidence
to reject 

When you fail to reject the null hypothesis, DON'T
immediately conclude that the variable has no association
with the response.

There may be a linear association that is just not strong
enough to detect given your data, or there may be a non-
linear association.

H0 : βj = 0
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Caution: "control for another variable in multiple
regression?"

It is wrong to say "we control for another variable". You
should say we control the effect of other variable(s),
which means we remove the effect of other variables from
the relation between the two or more variables. This
implies that we keep the effect of other variables brought
explicitly in the model constant.

What does it mean to control for the variables in the
model? It means that when you look at the effect of one
variable in the model, you are holding constant all of the
other predictors in the model.
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Prediction
We calculate predictions the same as with simple linear regression

tidy(model2) %>% select(term,estimate) %>% t()

##          [,1]          [,2]          [,3]          [,4]          [,5]         
## term     "(Intercept)" "polity2"     "vio"         "pop"         "miliper"    
## estimate " 5.98686841" " 0.06277831" "-1.11200537" " 0.10622131" " 1.17858598"

Example: What is the predicted log of GDP per capita for a country with
polity2 = 10, violence = TRUE, pop = 10, miliper = 3%?

5.987 + 0.063 * 10 -1.112 * 1 + 0.106 * 10  + 1.179 * 3

## [1] 10.102

The predicted GDP per capita is:

exp(5.987 + 0.063 * 10 -1.112 * 1 + 0.106 * 10  + 1.179 * 3 )

## [1] 24391.74
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Intervals for predictions

Just like with simple linear regression, we can use the
predict function in R to calculate the appropriate
intervals for our predicted values

x0 <- data.frame(polity2 = 10, vio = 1, pop = 10, miliper = 3)
predict(model2, x0, interval = "prediction")

##        fit      lwr      upr
## 1 10.10062 6.952866 13.24837

exp(predict(model2, x0, interval = "prediction"))

##        fit      lwr    upr
## 1 24358.04 1046.144 567144
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Predicted values

library(prediction)
model2 <- lm(gdppc ~ polity2 + vio, data = df)
pred_model_2 <- as_tibble(prediction(model2))
ggplot(data = pred_model_2) + # the new predicted values
geom_point(mapping = aes(x = polity2, y = gdppc,
          color = factor(vio))) +
# the regression lines are drawn (differentiated by color):

geom_line(mapping = aes(x = polity2, y = fitted, color = factor(vio),
                        group = factor(vio))) +
  labs(x = "Polity score", y = "GPDpc", color = "Violence")
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Cautions

Do not extrapolate! Because there are multiple
explanatory variables, you can extrapolation in many
ways

The multiple regression model only shows association, not
causality

To show causality, you must have a carefully designed
experiment or carefully account for confounding
variables in an observational study
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Checking Model Assumptions for
OLS
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Statistical Models

"Essentially all models are wrong, but some are
useful."

George Box, "Science and Statistics," Journal of the
American Statistical Association, 1976.

Models are simplified and idealized representations of
systems or objects:

Models will never be "the truth" if truth means entirely
representative of reality

Because they are simplified, models are often helpful in
understanding a certain component of a system
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Assumptions for Regression

1. Linearity: The plot of the mean value for  against  falls
on a straight line

2. Constant Variance: The regression variance is the same
for all values of  (homoscedasticity, v.s.,
heteroscedasticity)

3. Normality: For a given , the distribution of  around its
mean is Normal

4. Independence: All observations are independent

y x

x

x y
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Checking Assumptions

We can use plots of the residuals to check the assumptions
for regression.

1. Scatterplot of  vs.  (linearity).

Check this before fitting the regression model.

2. Plot of residuals vs. predictor variable (constant variance,
linearity)

3. Histogram and Normal QQ-Plot of residuals (Normality)

Y X
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Residuals vs. Predictor

When all the assumptions are true, the values of the
residuals reflect random (chance) error

We can look at a plot of the residuals vs. the predictor
variable

There should be no distinguishable pattern in the
residuals plot, i.e. the residuals should be randomly
scattered

A non-random pattern suggests assumptions might be
violated
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Plots of Residuals
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Checking assumptions for constant variance and
linearity with R
df <- df %>% mutate(residuals=resid(model))
ggplot(data = df) + 
  geom_point(aes(x = miliper, y = residuals)) + 
  geom_hline(yintercept=0,color="red")+
  labs(title="Residuals vs. miliper")
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Statistical diagnosis

library(lmtest)
bptest(model, studentize = T)

## 
##     studentized Breusch-Pagan test
## 
## data:  model
## BP = 6.4939, df = 1, p-value = 0.01082

Breusch-Pagan test: a regression is made, where the
dependent variable consists of the squared residuals as to
assess whether the independent variables of the model
have any relationship with the residuals. We expect
the effect to be 0 because if the error variance is constant,
the error should vary in relation to the values of the 

The p-value is less than 0.05, the null hypothesis is
rejected. We have some issues with heteroscedasticity

x
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Solution to heteroscedasticity

Solution, Robust Standard Error

library(sandwich)
coeftest(model, vcov = vcovHC(model, "HC3") )

## 
## t test of coefficients:
## 
##             Estimate Std. Error t value  Pr(>|t|)
## (Intercept)  7.98275    0.24709 32.3074 < 2.2e-16
## miliper      0.79971    0.28800  2.7768  0.006211

HC3 (highly recommended); HC1(the stata software
version)
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Checking linearty
df <- df %>% mutate(fitted.values=fitted(model))
ggplot(data = df, aes(x =fitted.values, y = residuals)) + 
  geom_point() + 
  geom_hline(yintercept=0,color="red")+
  labs(x = "Predicted values", y = "Residuals")
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Checking Normality

Examine the distribution of the residuals to determine if
the Normality assumption is satisfied

Plot the residuals in a histogram and a Normal QQ plot
to visualize their distribution and assess Normality

Most inference methods for regression are robust to some
departures from Normality
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Normal QQ-Plot
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Checking normality with R
ggplot(data=df,aes(x=residuals)) + 
  geom_histogram(aes(y=..density..), colour="black", fill="white") + geom_dens
  labs(title="Distribution of Residuals")
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ggplot(data=df, aes(sample=residuals)) + 
  stat_qq() + 
  stat_qq_line() +
  labs(title="Normal QQ Plot of Residuals")
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Checking influential values

plot(model, which = 4, id.n = 3)

not all outliers are influential observations.
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# Extract model results

augment(model) %>%
  mutate(index = 1:n())%>%
  top_n(3, .cooksd)

## # A tibble: 3 × 9
##   gdppc miliper .fitted .resid   .hat .sigma .cooksd .std.resid index
##   <dbl>   <dbl>   <dbl>  <dbl>  <dbl>  <dbl>   <dbl>      <dbl> <int>
## 1  6.63    1.55    9.22  -2.59 0.0380   1.43  0.0662      -1.83   107
## 2  6.35    1.43    9.12  -2.78 0.0299   1.43  0.0589      -1.95   121
## 3 10.9     1.72    9.36   1.53 0.0511   1.44  0.0320       1.09   141
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Checking Independence

Often, we can conclude that the independence assumption
is sufficiently met based on a description of the data and
how it was collected.

Two common violations of the independence assumption:

Serial Effect: If the data were collected over time, the
residuals should be plotted in time order to determine
if there is serial correlation

Cluster Effect: You can plot the residuals vs. a group
identifier or use different markers (colors/shapes) in
the residual plot to determine if there is a cluster
effect.
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Multicollinearity

Multicollinearity corresponds to a situation where the data
contain highly correlated predictor variables.

model2 <- lm(gdppc ~ miliper + dem + vio, data = df)
car::vif(model2)

##  miliper      dem      vio 
## 1.055984 1.067529 1.031670

As a rule of thumb, a VIF (variance inflation factors)
value that exceeds 5 indicates a problematic amount of
collinearity.

Solution: 1) remove one of the independent variables that
is strongly correlated; 2) combine the variables that are
strongly correlated.
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