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Agenda

s Linear probability model
s [Logit model
= Probit model

= Model Assumptions
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Binary Response Variables

» Binary response variables: Variables with only two
possible outcomes

= Country at risk of political violence (Yes/No)

= Decision to join or not join BRI
= Goals:

» Estimate probabilities of category membership

s Relate probabilities of category membership to other
variables

» Model: variation in the probability a countty is at
risk of political violence given values of the
predictor variables (GDP, population, regime
type, etc.)
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Data and Packages

# Load the packages

library(tidyverse)

library(broom)

library(AER) #for robust standard errors
library (dotwhisker)

library(stargazer)

library(knitr)

library (cowplot)
load(url("https://cc458.github.io/files/IRdata.RData"))
# we will use the 2015 data for now

df <- IRdata %>% filter(year == 2015)

= vio: Y is a binaty response variable

s 1: yes (violence occurrence)

» 0: no (violence absence)

» gdppc, pop, polity2: X aset of predictors
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Recap: Bernoulli distribution
[t Y is a random variable with two possible outcomes:
PrY=1)=p=1—-Pr(Y=0)=1—gq

The probability mass function f of this distribution, over
possible outcomes k

_ p,ifk=1

This can also be expressed as

flk,p) =p"(1 —p)'*, for ke {0,1}

0<=p<=1
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Modeling Binary DVs
Three common models for binary response variables:
y; ~ Bernoulli(p;),y € {0,1}
where,
pi = f(z:f)
» Linear Probability Model via OLS
= Identity link function for p

= Non-linear probability model via MLE

= Logistic Regression: Logit link function for p

» Probit Regression: Probit link function for p 6 /77



Linear Probability Model
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Linear Probability Model
y; ~ Bernoulli(p;),y € {0,1}
pi = z;f8

s This seems like a strange choice

s It is nonetheless useful to explore its meaning and
properties
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Interpretation

The LPM has an identity link for p, so the coetficients can be
interpreted directly in terms of probabilities.

p(yi =1) ==z
p(yi =0) =1—=x8
Estimating LPM in R
violence = By + B1 X GDP per capita + ¢
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model <- 1lm(vio ~ gdppc, data = df)
tidy(model) %>% kable(format = "markdown", digits = 3)

term estimate std.error statistic p.value
(Intercept) 0.938 0.200 4.681  0.000
gdppc -0.082 0.023  -3.518 0.001
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Robust standard errors

s OLS standard errors are biased in the presence of
heteroscedasticity, hypothesis tests are wrong

= [t is essential to use robust standard errors since the ¢; in

a linear probability model are always heteroskedastic
(non-constant variance for ¢;), e.g., 0% is proportional to

the value of X).

# print robust coefficient summary
coeftest(model, vcov. = vcovHC, type = "HC1l") %>%
tidy () %>%
kable(format = "markdown", digits = 5)

term estimate std.error statistic p.value
(Intercept) 0.93791 0.20333 4.61276 0.00001
gdppc -0.08159  0.02197 -3.71437 0.00029
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Problems with LPM

» The LPM imposes linearity on what is necessarily a non-
linear data generating process

s Probabilities are bounded by 0 and 1, but the LPM
places no such restrictions on the model

= It also overestimates changes in p as a function of X
near 1 and 0
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Non-Linear Link Functions
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Allowing for Non-Linearity

y; are independent, identically distributed (i.i.d.) Bernoulli
trials:

y; ~ Bernoulli(p;),y € {0,1}
D = g(fbiﬂ)

Suppose that Y = (y1,y2, - -, yn) represents the outcomes of
n independent Bernoulli trials, each with success probability
p.
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Allowing for Non-Linearity

The likelihood for p based on X is defined as the joint
probability distribution of Y7, Y5, ---,Y,,. Since
Y1,Ys5,---,Y, areii.d. random variables, the joint
distribution is given as:

L(PY) = [ 9(@:B)* (1 — g(z:8))—*

The log likelihood is (take log on both sides) :

L(P|Y) = Zyzln (z;8)) + (1 — y;)In(1 — g(x;8))
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Logit and Probit Link Functions: g ()
y; ~ Bernoulli(p;),y € {0,1}
pi = g(z:p)
= [Logit regression:
p; = logistic(x;B), logit(p;) = x; 0
s Probit regression:

pi = ®(x:B), probit(p;) = =
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Logistic and Logit Functions

s [ogistic function = standard cumulative logistic
distribution

exp(x)
1 + exp(x)

s [ogit function = log odds = invetrse cumulative logistic:

)

L

l
oml_m
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Logistic Regression Model
= Suppose P(y; = 1|z;) = p; and P(y; = 0|z;) = 1 — p;

s The logistic regression model is

log (2) = fio + bz

= log (1%}9@') is called the logit function
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Logit function

0<p<1l = —oo<log(1—) < 00
1.0_____________________________________1451,0.9§2)_ - {6.(]_,3.998]
(5.0, 0.993)
0.8 -
(1.0,0.73)
0.6 -
Pi (0.0, 0.50)
0.4 -
(-1.0, 0.27)
0.2-
(-5.0, 0.007)
0.0 T X .
1 1 I I I I |
-6 ~4 -2 0 2 4 6
logit(p:)

Openlntro Statistics, 4th ed (pg. 373)

19 /77



Cumulative Normal and Probit Functions

m  — cumulative standard normal
s Probit function = inverse cumulative normal

s These do not have closed-form solutions and are
approximated by software. This is the primary reason why
logit has been more popular until recently: it was easy to
calculate.

= left: p; = ®(x;8); right: probit(p;) = z;
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Latent Variable Intuition for Binary DVs

L, ify* >
Yi — e p %
0, ify* <t

Y = z;8+ €, € ~ g(0,0%)

Logit: assume 7 = 0, ¢; ~ logistic(u = 0,s = 1) Probit:
assume 7 = 0, ¢; ~ N(0,1)
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Latent Variable Intuition for Binary DVs

ey

= Long (1997). Regression Models for Categorical and
Limited Dependent Variables

» Find the point X3 on y*, and then take a random draw

from a standard logistic or standard normal and add it to
X(: it you are above 0, then y = 1, if you are below zero,



Translating Back to Probability Space
m [Logit:
p; = p(x; 8+ ¢ >0) =p(—¢ < x;8) = logistic(x;P)
= Probit:
pi = p(zif+€ > 0) =p(—€ < z;8) = ®(x:8)
s Estimating the coefficients

» Estimate coefficients using maximum likelihood
estimation

s Basic Idea:

= Find values ofﬂAO and Bl that give observed data

the maximum probability of occurring 23 /77



Estimating Logitin R

m_logit <- glm(vio ~ gdppc, data = df, family = binomial(link = "logit"))
tidy(m_logit, conf.int = TRUE) %>% kable(format = "markdown", digits = 5)

term estimate std.error statistic p.value conf.low conf.hi
(Intercept) 2.83420 1.19397 2.37376 0.01761 0.54264 5.251.
gdppc -0.48064 0.14675 -3.27532 0.00106 -0.78219 -0.203

Logit: P(vio]Agdppc) = logit(2.83420 — 0.48064 x gdppc)
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Estimating ProbitinR

m_probit <- glm(vio ~ gdppc, data = df, family = binomial(link = "probit")
tidy(m_probit, conf.int = TRUE) %>% kable(format = "markdown'", digits = 5)

term estimate std.error statistic p.value conf.low conf.hi;
(Intercept) 1.67285 0.69474 2.40786 0.01605 0.31968  3.066
gdppc -0.28559  0.08367 -3.41336 0.00064 -0.45534 -0.123

Probit: P(m’o[qdppc) = $(1.67285 — 0.28559 x gdppc)
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Interpreting the intercept: (5

10g(lpi ) = Bo + Bizi
— Pi

When x = 0, log-odds of y are S

= Won't use this interpretation in practice

= When x = 0, odds of y are exp{ 5y}

pi = ®(Bo + B1zi)

When ¢ = 0, z-score of y are 3

The probit regression coefficients give the change in the z-
score or probit index for a one unit change in the 26 /77



Interpreting logistic slope coefficient 3

10%(11% ) = Bo + Bizi
— Pi

It  is a quantitative predictor

» As x; increases by 1 unit, we expect the log-odds of y to
increase by 54

= As x; increases by 1 unit, the odds of y multiply by a
factor of exp{f:}
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Interpreting logistic slope coefficient 3

If z is a categorical predictor. Suppose xz; = k

» The difference in the log-odds between group k and the
baseline is 34

= The odds of y for group k are exp{3;} times the odds of y
for the baseline group.

We interpret the sign of the coefficient but not the
magnitude

= We should not compare the magnitude of the coetficients
among different models because different models have
different scales of coefficients.
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Inference for coefficients

s The standard error is the estimated standard deviation of
the sampling distribution of 3,

s We can calculate the confidence interval based on the
large-sample Normal approximations

s CI for 131:
B, + z*SE(B,)
= CI for exp{B}:

eXP{Bl + Z*SE(Bl)}
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Odds and Log Odds
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Response Variable, Y

» Mean(Y) =p
= pis the proportion of "yes" responses in the population

= p is the proportion of "yes" responses in the sample
= Variance(Y) = p(1 — p)
= Sample variance: p(1 — p)

= Odds(Y=1) = 1L

—p

= Sample odds: %
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Odds

= Given p, the population proportion of "yes" responses (i.e.
"success"), the corresponding odds of a "yes" response is

» The sample odds are w = ——

= Ex: Suppose the sample proportion p = 0.3. Then, the
sample odds are

W= 0.3 = 0.4286 ~ 2in b
1-0.3
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Properties of the odds
= odds > 0
» [f p=0.5, thenodds =1

s If odds of "yes" = w, then the odds of "no" = %

(1:w)

= [f odds of "yes" = w, then p =

33 /77



Odds, log odds, probability

# function probability -> log-odds

getlogit <- function(p) { log(p/(1-p)) }

# function log-odds -> probability

getpro <- function(x) { 1/(1 + exp(-x))}

# set odds

odds <- c(0.1, 0.2, 0.5, 1.0, 2.0, 5.0, 10.0)
# get log odds (logit)

(log_odds <- log(odds))

## [1] -2.3025851 -1.6094379 -0.6931472 0.0000000 0.6931472 1.6094379 2.30258!

# convert from log-odds to probability
(probs <- getpro(log_odds))

## [1] 0.09090909 0.16666667 0.33333333 0.50000000 0.66666667 0.83333333 0.909090

# convert from probability to log-odds
getlogit(probs)

## [1] -2.3025851 -1.6094379 -0.6931472 0.0000000 0.6931472 1.6094379 2.30258
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Mapping odds to log-odds

Mapping log-odds to probabilities
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Response Variable, vio

##
##
##
##
##

# A tibble: 2 x 3

vio n proportion

<db1l> <int> <dbl>

1 0] 112 0.757

2 1 36 0.243
P = 0.243

Sample variance = 0.243 * (1- 0.243) = 0.183951
Odds(Y = 1) = 0.243/(1 - 0.243) = 0.321004

Odds(Y = 0) =1/ 0.321004 = 3.1152263
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Regressions with multiple predictors

» y: Whether a country in the sample is high risk of having
violence.

= p; = P(y; = 1|gdppc,, population,, regime type,):
probability a country 7 is high risk for violence given their
GDP per capita, population, and regime type.

Let's consider fitting a multiple linear regression model. Below are 3 possible
response variables.

Model 1: gy, = Bo + Blgdppc -+ B2pop -+ Bgregime

Model 2: log(17%-) = B + B1gdppe + B,pop + B;regime

Model 3: p, = <I>(BO —- Blgdppc — B2pop — Bgregime)

library(stargazer) 37 / 77



Regression output I: table

stargazer(ml, m2, m3, header = FALSE, type = "html", single.row=TRUE, ci=TRUE, ¢
dep.var.labels.include = FALSE)

Dependent variable:

OLS logistic probit

) 2) ©)
gdppc 20.060"" (-0.101,-0.020)  -0.551" (-0.914, -0.188)  -0.300 " (-0.497, -0.102)
pop 0.134" (0.095, 0.172) 1.198" (0.721, 1.675) 0.608"" (0.372, 0.843)
polity2 -0.009" (-0.019, 0.002) -0.087" (-0.174, 0.001) -0.040" (-0.088, 0.008)
Constant 1.380"" (-2.124, -0.636) -16.397" (-24.094, -8.699) -8.239""" (-12.202, -4.277)
Observations 148 148 148
R? 0.313
Adjusted R? 0.299
Log Likelihood -53.284 -54.195
Akaike Inf. Crit. 114.568 116.391
Residual Std. Error 0.360 (df = 144)
F Statistic 21.906 " (df = 3; 144)
Note: "p<0.1; "p<0.05; " p<0.01
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Regression output Il: graph

library (dotwhisker)
dwplot(list(ml, m2, m3), conf.level = .95, show_intercept = TRUE) +
theme_bw() + ggtitle("Coefficient Plot")
Coefficient Plot
(Intercept) 4 ° . e
l model
d -
gcppe ~ ® Model 1
b ® Model 2
pop - -
¢ Model 3
polity2 0:
.25 .20 .15 10 5 0
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Prediction
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Using the model for prediction

= We are often interested in predicting whether a given
observation will have a "yes" response

= To do so

s Use the logistic regression model to calculate the
predicted log-odds that an obsetrvation has a "yes"
response

s Then, use the log-odds to calculate the predicted
probability of a "yes" response

s Then, use the predicted probabilities to classify the
observation as having a "yes" or "no" response
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Calculating the predicted probability

. exp{By + Bizi}

1+ eXp{BO -+ lez}

A

pP; % %
log(l—ﬁ.) = Pot P

]

A

= exp { log ( 1 fiﬁ ) } = eXP{Bo =+ Blwz}

1

A

p; 5 2
= 5. = exp{B, + Bz}

]

R €X 3 —I—A.’Ez' 1
= p = P{fBo + B1i} _

" ltexp{By+ Bz} 1+ exp(—{By+ Braid) )




D Vs. log/—(ﬁds

_ exp(By+Byz)  exp(log-odds)
o1+ eXp(BO + Blwz) 1+ exp(log/-oﬁds)

Predicted Probability vs. Predicted Log-Odds

1.00 1

=

~

o
1
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o o
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Predicted violence for a country

» Suppose a country whose gdppc is 10, pop is 11, and
regime type is 8

s Predicted log-odds that this country is high risk for
violence:

A

log ( 1 b . ) — _16.39683 — 0.55098 X gdppc + 1.19806 X pop — 0.08¢

log ( 1 P_ ) — _16.39683 — 0.55098 x 10 + 1.19806 x 11 — 0.
—p

» The probability this country is high risk for violence:

. exp{—9.42173}
Pi = 1 exp{-9.42173}

— 8.093931e — 05
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PredictionsinR
newdf <- data.frame(gdppc = 10, pop = 11, polity2 = 8,
vio = as.factor(0))
» Predicted log-odds
predict(m2, newdf)

## 1
## -9.421727

» Predicted probabilities
predict(m2, newdf, type = "response")

## 1
## 8.093953e-05
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Predicted probabilities with Cis

pred <- predict(m2, newdf, se.fit = TRUE)
upr <- pred$fit + (1.96%pred$se.fit)

lwr <- pred$fit - (1.96%pred$se.fit)

fit <- predsfit

getpro(fit) ;getpro(upr);getpro(lwr)

## 1
## 8.093953e-05

#H 1
## 0.002260058

## 1
## 2.892599e-06

» [s this country high risk?

The probability the country is at risk for violence is 0.
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Visual representation of results

library(margins)
library(prediction)

predict_m2 <- prediction::prediction(m2,

at = list(polity2 = unique(model.frame(m2)S$polity2)))

summary (predict_m2)

## at(polity2) Prediction SE z p Tlower
## -10 0.3972 0.08838 4.495 6.960e-06 0.2240
## -9 0.3850 0.08217 4.686 2.792e-06 0.2240
## -8 0.3729 0.07604 4.904 9.411e-07 0.2238
## -7 0.3608 0.07002 5.153 2.560e-07 0.2236
## -6 0.3489 0.06414 5.439 5.349e-08 0.2232
## -5 0.3371 0.05845 5.766 8.099e-09 0.2225
## -4 0.3254 0.05301 6.138 8.339%9e-10 0.2215
## -3 0.3138 0.04786 6.556 5.517e-11 0.2200
## -2 0.3024 0.04311 7.015 2.298e-12 0.2179
## -1 0.2912 0.03883 7.498 6.493e-14 0.2150
## 0] 0.2801 0.03516 7.967 1.624e-15 0.2112
## 1 0.2692 0.03220 8.360 6.28le-17 0.2061
## 2 0.2585 0.03009 8.591 8.616e-18 0.1996
## 3 0.2481 0.02890 8.583 9.273e-18 0.1914
## 4 0.2378 0.02863 8.306 9.881le-17 0.1817
## 5 0.2278 0.02919 7.806 5.926e-15 0.1706
HH A O . 2180 O.030040 7.171 7.423e—-12 (0.1584

oMo ONONONONONONONONONONOMNOMOMNMOMNO)

upper
.5705
.5461
.5219
.4981
4746
.4516
.4293
.4076
. 3869
.3673
. 3490
.3323
.3175
.3047
.2939
.2850
2776
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Graphs

ggplot(summary (predict_m2), aes(x = “at(polity2)’,
ymin = lower, ymax
geom_Lline() +geom_errorbar(width = 0.2) +
theme(axis.text.x = element_text(angle = 90)) +
labs(x = "polity score",y = "Pred. probability of violence")

y = Prediction,
= upper,group = 1)) +
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ggplot(summary(predict_m2), aes(x = “at(polity2) )) +
geom_line(aes(y Prediction)) +
geom_line(aes(y upper), Llinetype
geom_line(aes(y lower), linetype
geom_hline(yintercept = 0) +
labs(x = "polity score",

y = "Pred. probability of violence")

2)+
2) +

0.4

0.2 1

Pred. probability of violence
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library(margins)
persp(intl, "pop",

intl <- glm(vio ~ gdppc + pop*polity2, data = df, family = binomial(link = "lc

"polity2", what = "prediction", type = "response'")
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Panel data for logit and Probit models:
bife

= Stammann, A., F. Heiss, and D. McFadden (2016). "Estimating Fixed Effects Logit Models with
Large Panel Data". Working paper.

= formula must be of type y ~ x | id where the 1id refers to an
individual 1didentifier (fixed effect category)

library(bife)

ml <- glm(vio ~ gdppc + pop + polity2, data IRdata, family binomial(link
m2 <- glm(vio ~ gdppc + pop + polity2, data IRdata, family binomial(link
m_logitl <- bife(vio ~ gdppc + pop + polity2 | year, model = "logit", data =
m_probitl <- bife(vio ~ gdppc + pop + polity2 | year, model "probit'", data
m_logit2 <- bife(vio ~ gdppc + pop + polity2 | ccode, model "logit", data =
m_probit2 <- bife(vio ~ gdppc + pop + polity2 | ccode, model = "probit", data

11
=l
o= 1

library(texreg)
htmlreg(list(ml, m2, m_logitl, m_probitl, m_logit2, m_probit2))
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Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

(Intercept) 10407 572"
0.61)  (0.33)
gdppc 05477 203077 05577 03177 20,607 2035
(0.03)  (0.02) (0.03) (0.02) (0.19)  (0.10)
pop 082" 045 083 046 -078  -0.40
0.04)  (0.02)  (0.04)  (0.02) (0.59)  (0.34)
polity2 0.047" 20027 0037 -0.027 008" -0.05
(0.01)  (0.00)  (0.01)  (0.00) (0.02)  (0.01)
AIC 3164.32  3168.54
BIC 3189.17 3193.39
Log Likelihood -1578.16 -1580.27 -1566.71 -1568.82 -727.91 -729.26
Deviance 315632 3160.54 313341 3137.64 1455.82 1458.52
Num. obs. 3687 3687 3687 3687 1580 1580

"5 <0.001; Tp<0.01; p<0.05

Statistical models



Panel data for logit and Probit models:
lme4

library(1lme4)

mlm_1 <- lmer(gdppc ~ miliper + vio + pop + polity2 + (1 | year), data = IRdat
mlm_2 <- glmer(vio ~ gdppc + pop + polity2 + (1 | year), data = IRdata, family
mlm_3 <- glmer(vio ~ gdppc + pop + polity2 + (1 | ccode), data = IRdata, famil

htmlreg(list(mlm_1, mlm_2, mlm_3))
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Results

Model1 Model2 Model 3
(Intercept) 55377 -104077 -1846
(0.27) (0.61) (3.24)
miliper 105"
(0.05)
vio 1017
(0.06)
pop 0097 082" 1497
0.02) (004  (0.21)
polity2 01077 0047 c0m
0.00)  (0.01)  (0.02)
gdppe 05477 1107
(0.03) (0.13)
AIC 12670.87 3166.32  1885.68
BIC 1271436  3197.38 1916.74
Log Likelihood -6328.44 -1578.16 -937.84
Num. obs. 3687 3687 3687
Num. groups: year 26 26
Var: year (Intercept)  0.20 0.00
Var: Residual 1.77
Num. groups: ccode 156
Var: ccode (Intercept) 11.92

' <0.001; Tp < 0.01; p < 0.05

Statistical models



Confusion Matrix

= We can use the predicted probability to predict the
outcome for a given observation

» In other words, we can classify the observations into
two groups: "yes" and "no"

» How: Establish a threshold such that y = 1 if predicted
probability is greater than the threshold
(y = 0 otherwise)

s To assess the accuracy of our predictions, we can make a
table of the observed (actual) response versus the
predicted response. This table is the confusion matrix

= We can use this table to calculate the proportion of
observations that were misclassifed. This is the
misclassification rate. 55 / 77



Confusion Matrix

Suppose we use 0.3 as the threshold to classify observations

threshold <- 0.3
m_aug <- augment(ml, type.predict = "response",
type.residuals = '"deviance")

m_aug 9%>%
mutate(risk_predict = if_else(.fitted > threshold, "Yes", "No")) %>%
group_by(vio, risk_predict) %>%
summarise(n = n()) %>%
kable(format="markdown'")

vio risk_predict n
0 No 2115
0 Yes 606
1 No 219
1 Yes 747
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Confusion matrix

vio risk_predict n
0 No 2115
0 Yes 606
1 No 219
1 Yes 747

What proportion of observations were misclassified?

What is the disadvantage of relying on the confusion matrix to assess the accuracy of the model?
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Confusion matrix: 2 X 2 table

In practice, you often see the confusion matrix presented as a 2 x 2 table as shown below:

m_aug 9%>%
mutate(risk_predict = if_else(.fitted > threshold, '"Yes", "No")) %>%
group_by(vio, risk_predict) %>%
summarise(n = n()) %>%
spread(risk_predict, n) %>%
kable(format="markdown")

vio No Yes
0 2115 606
1 219 747
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Confusion matrix by hand

Predicted Positive Predicted Negative
N TP EN Sensitivity
Actual Positive ‘ o TP
True Positive False Negative R S
(TP + FN)
‘ FP TN Specificity
Actual Negative N T TN
False Positive True Negative _—
(TN + FP)
.. Negative Predictive
Precision 5 Val Accuracy
TP ;;e TP +TN
(TP + FP) ... (TP + TN + FP + FN)
(TN + FN)

m true positives (TP): These are cases in which we predicted yes, and they do happen.

= true negatives (TN): We predicted no, and they don't happen.

» false positives (FP): We predicted yes, but they don't actually happen. (Also known as a "Type 1

error.")

= false negatives (FN): We predicted no, but they actually do happen. (Also known as a "Type 11

error.")
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Sensitivity & Specificity

= Sensitivity: Proportion of observations with y = 1 that have predicted probability above a
specified threshold

» Called true positive rate (y-axis) (also referred to as Recall)

= Specificity: Proportion of observations with ¢y = 0 that have predicted probability below a
specified threshold

m (1 - specificity) called false positive rate (x-axis)

m Precision: Of the relevant cases identified, how many errors were made? (i.e., how precise are my
predictions)

m positive predictive value of the classifier
= What we want:

s High sensitivity

m Low values of 1-specificity
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Receiver Operating Characteristic (ROC) curve

library(plotROC) #extension of ggplot2
(roc_curve <- ggplot(m_aug, aes(d = as.numeric(vio) - 1, m = .fitted)) +
geom_roc(n.cuts = 10, labelround = 3) +
geom_abline(intercept = 0) +
labs(x = "False Positive Rate (1 - Specificity)",
y = "True Positive Rate (Sensitivity)") )

> 1.001
=
= 0.
C -
i)
& 0.501 0.43
o
= 0.583
80254
o
()
2
— 0.00 -
0.00 0.25 0.50 0.75 1.00

False Positive Rate (1 - Specificity)
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We can use the area under the curve (AUC) as one way to assess how well the logistic model fits the
data

s AUC = 0.5 very bad fit (no better than a coin flip)
= AUC close to 1: good fit

-

o

o
1

0.754 0.33

0.50 0.43

0 5s) 0.583

True Positive Rate (Sensitivity)

Q

o

o
1

0.00 0.25 0.50 0.75 1.00
False Positive Rate (1 - Specificity)

calc_auc(roc_curve) SAUC

## [1] 0.8394968



ROC and Precision-Recall curves

library(precrec)

precrec_obj <- evalmod(scores = m_augs$.fitted, labels = as.numeric(m_aug$vio)
autoplot(precrec_obj)

ROC - P: 966, N: 2721 Precision-Recall - P: 966, N: 2
1.00 4 1.00 4
0.75 0.75
P c
S )
= 050 2 0.50-
= o
3 o
0.25 0.25
0.00 1 0.00 1
000 025 050 0.75 1.00 000 025 050 0.75 1.00
1 - Specificity Recall
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Checking Assumptions for Logit
model
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Assumptions for logistic regression

logit_m <- glm(vio ~ dem + gdppc, data = df, family = binomial(link = "log

We want to check the following assumptions for the logistic
regression model:

» Linearity: Is there a linear relationship between the log-
odds and the predictor variables?

» Randomness: Was the sample randomly selected? Or can
we reasonably treat it as random?

» Independence: There is no obvious relationship between
observations
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Linearity: binned residual plots

» It is not useful to plot the raw residuals, so we will
examine binned residual plots

s When examining binned residuals

Plot should have no discernible pattern or trend

» Nonlinear trend may be indication that squared term
or log transformation of predictor variable required

s [f bins have average residuals with large magnitude

» Look at averages of other predictor variables across
bins
» Interaction may be required if large magnitude

residuals correspond to certain combinations of
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Binned plot vs. predicted values

= Use the binnedplot function in the arm package.

s Tip: Don't load the arm package to avoid conflicts with
tidyverse

m_aug <- augment(logit_m, type.predict = "response'",
type.residuals = "deviance")

arm: :binnedplot(x = m_augs$.fitted, y = m_aug$.resid,
xlab "Predicted Probabilities",

main "Binned Residual vs. Predicted Values",
col.int = FALSE)
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Average residual

-0.6 0.2

Binned Residual vs. Predicted Values

Predicted Probabilities



Making binned residual plot

A

m Calculate raw residuals (yz — 7Tz')

s Order observations either by the values of the predicted
probabilities (or by numetic predictor variable)

s Use the ordered data to create g bins of approximately
equal size. Default value: g = /n

s Calculate average residual value in each bin

» Plot average residuals vs. average predicted probability
(or average predictor value)
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Residuals vs. dem

Make binned plot with predictor on x axis

arm: :binnedplot(x

Average residual

-04 0.2

m_augS$Sdem,

y = m_aug$.resid,

col.int = FALSE,

xlab = "dem",

main = "Binned Residual vs. dem")

Binned Residual vs. dem

[ ]
®
[ [ [ |
1.5 2.0 25 3.0
dem
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Residuals vs. gdppc

arm: :binnedplot(x = m_aug$gdppc,

Average residual

0.5

-0.5

y = m_aug$.resid,

col.int = FALSE,

xlab = "GDPpC (Mean-Centered)",
main = "Binned Residual vs. gdppc")

Binned Residual vs. gdppc

GDPpC (Mean-Centered)
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Residuals vs. categorical predictors

s Calculate average residual for each level of the predictor

s Are all means close to 07 If not, there is a problem with
model fit.

m_aug %>%
group_by (dem) %>%
summarise(mean_resid = mean(.resid))

## # A tibble: 3 x 2

## dem mean_resid
## <dbl> <dbl>
## 1 1 -0.482
## 2 2 0.138
## 3 3 -0.224
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Randomness

Assess randomness based on a description of the data
collection

» Was the sample randomly selected?

s If the sample was not randomly selected, is there reason
to believe the observations in the sample differ
systematically from the population of interest?

What do you conclude about the randomness assumption for
our dataset?
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Independence

Assess independence based on a description of the data
collection

» Is there an obvious relationship between observations?

» This assumption is most often violated when data was
collected over time or there is a spatial relationship
between observations?

What do you conclude about the independence assumption
for our dataset?
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Checking influential values

plot(logit_m, which = 4, id.n = 3)

Q ) Cook's distance

O _—4

% 8_ B 114

5 © _] 59

$ g- | |

$ 8 | .||...| ...... e |l ..I|...|.|||..nl.|||||I.||.||..|....|..|.|||||.......n..|.|...lln..I.I..II .....

8 o | [ [ [
0 50 100 150

Obs. number
glm(vio ~ dem + gdppc)

s not all outliers are influential observations.
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# Extract model results

augment (logit_m) %>%
mutate(index = 1:n())%>%
top_n(3, .cooksd)

## # A tibble: 3 x 10

#H# vio dem gdppc .fitted .resid .std.resid .hat .sigma .cooksd index
#i# <dbl> <dbl> <dbl> <dbl> <db1l> <dbl> <dbl> <dbl> <dbl> <int>
## 1 1 3 10.9 -2.64 2.33 2.35 0.0162 1.00 0.0780 1
## 2 1 1 8.61 -0.648 1.46 1.50 0.0494 1.01 0.0348 59
## 3 1 3 10.5 -2.42 2.24 2.26 0.0154 1.00 0.0597 114
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Multicollinearity in Logit model
car::vif(logit_m )

#i dem gdppc
## 1.000259 1.000259

s As a rule of thumb, a VIF value that exceeds 5 indicates a
problematic amount of collinearity.
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