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Binary Response Variables

Binary response variables: Variables with only two
possible outcomes

Country at risk of political violence (Yes/No)
Decision to join or not join BRI

Goals:

Estimate probabilities of category membership
Relate probabilities of category membership to other
variables

Model: variation in the probability a country is at
risk of political violence given values of the
predictor variables (GDP, population, regime
type, etc.)
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Data and Packages

# Load the packages

library(tidyverse)
library(broom)
library(AER) #for robust standard errors 
library(dotwhisker)
library(stargazer)
library(knitr)
library(cowplot)
load(url("https://cc458.github.io/files/IRdata.RData"))
# we will use the 2015 data for now

df <- IRdata %>% filter(year == 2015)

vio:  is a binary response variable

1: yes (violence occurrence)
0: no (violence absence)

gdppc, pop, polity2:  a set of predictors

Y

X
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Recap: Bernoulli distribution

If  is a random variable with two possible outcomes:

The probability mass function  of this distribution, over
possible outcomes 

This can also be expressed as

Y

Pr(Y = 1) = p = 1 − Pr(Y = 0) = 1 − q

f
k

f(k, p) = { p, if k = 1
q = 1 − p, if k = 0

f(k, p) = pk(1 − p)1−k, for k ∈ {0, 1}

0 <= p <= 1
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Modeling Binary DVs

Three common models for binary response variables:

where,

Linear Probability Model via OLS

Identity link function for 

Non-linear probability model via MLE

Logistic Regression: Logit link function for 
Probit Regression: Probit link function for 

yi ∼ Bernoulli(pi), y ∈ {0, 1}

pi = f(xiβ)

p

p

p
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Linear Probability Model
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Linear Probability Model

This seems like a strange choice
It is nonetheless useful to explore its meaning and
properties

yi ∼ Bernoulli(pi), y ∈ {0, 1}

pi = xiβ
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Interpretation

The LPM has an identity link for , so the coefficients can be
interpreted directly in terms of probabilities.

Estimating LPM in R

p

p(yi = 1) = xiβ

p(yi = 0) = 1 − xiβ

violence = β0 + β1 × GDP per capita + ϵ
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model <- lm(vio ~ gdppc, data = df)
tidy(model) %>% kable(format = "markdown", digits = 3)

term estimate std.error statistic p.value

(Intercept) 0.938 0.200 4.681 0.000

gdppc -0.082 0.023 -3.518 0.001
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Robust standard errors

OLS standard errors are biased in the presence of
heteroscedasticity, hypothesis tests are wrong

It is essential to use robust standard errors since the  in
a linear probability model are always heteroskedastic
(non-constant variance for ), e.g.,  is proportional to
the value of ).

# print robust coefficient summary

coeftest(model, vcov. = vcovHC, type = "HC1") %>% 
  tidy() %>%  
  kable(format = "markdown", digits = 5)

term estimate std.error statistic p.value
(Intercept) 0.93791 0.20333 4.61276 0.00001
gdppc -0.08159 0.02197 -3.71437 0.00029

ϵi

ϵi σ2

Xi
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Problems with LPM

The LPM imposes linearity on what is necessarily a non-
linear data generating process

Probabilities are bounded by 0 and 1, but the LPM
places no such restrictions on the model
It also overestimates changes in  as a function of 
near 1 and 0

p X
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Non-Linear Link Functions
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Allowing for Non-Linearity

 are independent, identically distributed (i.i.d.) Bernoulli
trials:

Suppose that  represents the outcomes of
 independent Bernoulli trials, each with success probability
.

yi

yi ∼ Bernoulli(pi), y ∈ {0, 1}

pi = g(xiβ)

Y = (y1, y2, ⋯ , yn)
n
p
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Allowing for Non-Linearity

The likelihood for  based on  is defined as the joint
probability distribution of . Since

 are i.i.d. random variables, the joint
distribution is given as:

The log likelihood is (take log on both sides) :

p X
Y1,Y2, ⋯ ,Yn

Y1,Y2, ⋯ ,Yn

L(P |Y ) = ∏ g(xiβ)yi(1 − g(xiβ))(1−yi)

LL(P |Y ) = ∑ yiln(g(xiβ)) + (1 − yi)ln(1 − g(xiβ))
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Logit and Probit Link Functions: g()

Logit regression:

Probit regression:

yi ∼ Bernoulli(pi), y ∈ {0, 1}

pi = g(xiβ)

pi = logistic(xiβ), logit(pi) = xiβ

pi = Φ(xiβ), probit(pi) = xiβ
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Logistic and Logit Functions

Logistic function = standard cumulative logistic
distribution

Logit function = log odds = inverse cumulative logistic:

exp(x)

1 + exp(x)

log( )
x

1 − x
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Logistic Regression Model

Suppose  and 

The logistic regression model is

 is called the logit function

P(yi = 1|xi) = pi P(yi = 0|xi) = 1 − pi

log( ) = β0 + β1xi
pi

1 − pi

log( )pi
1−pi

18 / 77



Logit function

OpenIntro Statistics, 4th ed (pg. 373)

0 ≤ p ≤ 1 ⇒ −∞ < log( ) < ∞
p

1 − p
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Cumulative Normal and Probit Functions

 cumulative standard normal
Probit function = inverse cumulative normal
These do not have closed-form solutions and are
approximated by software. This is the primary reason why
logit has been more popular until recently: it was easy to
calculate.

left: ; right: 

Φ =

pi = Φ(xiβ) probit(pi) = xiβ
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Latent Variable Intuition for Binary DVs

Logit: assume ,  Probit:
assume , 

yi = {
1, if y∗ > τ

0, if y∗ ≤ τ

y∗
i = xiβ + ϵi, ϵi ∼ g(0,σ2)

τ = 0 ϵi ∼ logistic(μ = 0, s = 1)
τ = 0 ϵi ∼ N(0, 1)
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Latent Variable Intuition for Binary DVs

Long (1997). Regression Models for Categorical and
Limited Dependent Variables

Find the point  on , and then take a random draw
from a standard logistic or standard normal and add it to

: if you are above 0, then , if you are below zero,
the .

Xβ y∗

Xβ y = 1
y = 0 22 / 77



Translating Back to Probability Space

Logit:

Probit:

Estimating the coefficients

Estimate coefficients using maximum likelihood
estimation

Basic Idea:

Find values of  and  that give observed data
the maximum probability of occurring

pi = p(xiβ + ϵi > 0) = p(−ϵi < xiβ) = logistic(xiβ)

pi = p(xiβ + ϵi > 0) = p(−ϵi < xiβ) = Φ(xiβ)

β̂0 β̂1
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Estimating Logit in R

m_logit <- glm(vio ~ gdppc, data = df, family = binomial(link = "logit"))
tidy(m_logit, conf.int = TRUE) %>% kable(format = "markdown", digits = 5)

term estimate std.error statistic p.value conf.low conf.hig
(Intercept) 2.83420 1.19397 2.37376 0.01761 0.54264 5.2514
gdppc -0.48064 0.14675 -3.27532 0.00106 -0.78219 -0.2035

Logit: ^P(vio|gdppc) = logit(2.83420 − 0.48064 × gdppc)
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Estimating Probit in R

m_probit <- glm(vio ~ gdppc, data = df, family = binomial(link = "probit"))
tidy(m_probit, conf.int = TRUE) %>% kable(format = "markdown", digits = 5)

term estimate std.error statistic p.value conf.low conf.hig
(Intercept) 1.67285 0.69474 2.40786 0.01605 0.31968 3.0666
gdppc -0.28559 0.08367 -3.41336 0.00064 -0.45534 -0.1236

Probit: ^P(vio|gdppc) = Φ(1.67285 − 0.28559 × gdppc)
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Interpreting the intercept: 

When , log-odds of  are 

Won't use this interpretation in practice

When , odds of  are 

When , z-score of  are 

The probit regression coefficients give the change in the z-
score or probit index for a one unit change in the

d

β0

log( ) = β0 + β1xi
pi

1 − pi

x = 0 y β0

x = 0 y exp{β0}

pi = Φ(β0 + β1xi)

x = 0 y β0
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Interpreting logistic slope coe�icient 

If  is a quantitative predictor

As  increases by 1 unit, we expect the log-odds of  to
increase by 

As  increases by 1 unit, the odds of  multiply by a
factor of 

β1

log( ) = β0 + β1xi
pi

1 − pi

x

xi y
β1

xi y
exp{β1}
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Interpreting logistic slope coe�icient 

If  is a categorical predictor. Suppose 

The difference in the log-odds between group  and the
baseline is 
The odds of  for group  are  times the odds of 
for the baseline group.

We interpret the sign of the coefficient but not the
magnitude

We should not compare the magnitude of the coefficients
among different models because different models have
different scales of coefficients.

β1

x xi = k

k
β1

y k exp{β1} y
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Inference for coe�icients

The standard error is the estimated standard deviation of
the sampling distribution of 

We can calculate the confidence interval based on the
large-sample Normal approximations

CI for :

CI for :

β̂1

β1

β̂1 ± z∗SE(β̂1)

exp{β1}

exp{β̂1 ± z∗SE(β̂1)}
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Odds and Log Odds

30 / 77



Response Variable, 

 is the proportion of "yes" responses in the population
 is the proportion of "yes" responses in the sample

Sample variance: 

Sample odds: 

Y

Mean(Y ) = p

p

p̂

Variance(Y ) = p(1 − p)

p̂(1 − p̂)

Odds(Y=1) =
p

1−p

p̂

1−p̂
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Odds

Given , the population proportion of "yes" responses (i.e.
"success"), the corresponding odds of a "yes" response is

The sample odds are 

Ex: Suppose the sample proportion . Then, the
sample odds are

p

ω =
p

1 − p

ω̂ =
p̂

1−p̂

p̂ = 0.3

ω̂ = = 0.4286 ≈  2 in 5
0.3

1 − 0.3
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Properties of the odds

If , then odds 

If odds of "yes" , then the odds of "no" 

If odds of "yes" , then 

odds ≥ 0

p = 0.5 = 1

= ω = 1
ω

= ω p = ω
(1+ω)
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Odds, log odds, probability
# function probability -> log-odds

getlogit <- function(p) { log(p/(1-p)) }
# function log-odds -> probability

getpro <- function(x) { 1/(1 + exp(-x))}
# set odds

odds <- c(0.1, 0.2, 0.5, 1.0, 2.0, 5.0, 10.0)
# get log odds (logit)

(log_odds <- log(odds))

## [1] -2.3025851 -1.6094379 -0.6931472  0.0000000  0.6931472  1.6094379  2.302585

# convert from log-odds to probability

(probs <- getpro(log_odds))

## [1] 0.09090909 0.16666667 0.33333333 0.50000000 0.66666667 0.83333333 0.9090909

# convert from probability to log-odds

getlogit(probs)

## [1] -2.3025851 -1.6094379 -0.6931472  0.0000000  0.6931472  1.6094379  2.302585
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Plotting

lightblue region: Y=0 more likely
lightgray region: Y =1 more likely
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Response Variable, vio
## # A tibble: 2 × 3
##     vio     n proportion
##   <dbl> <int>      <dbl>
## 1     0   112      0.757
## 2     1    36      0.243

 = 0.243

Sample variance = 0.243 * (1- 0.243) = 0.183951

Odds(Y = 1) = 0.243/(1 - 0.243) = 0.321004

Odds(Y = 0) = 1 / 0.321004 = 3.1152263

p̂
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Regressions with multiple predictors

: Whether a country in the sample is high risk of having
violence.

:
probability a country  is high risk for violence given their
GDP per capita, population, and regime type.

Let's consider fitting a multiple linear regression model. Below are 3 possible
response variables.

Model 1: 

Model 2: 

Model 3: 

library(stargazer)
l ( i d li d df)

y

pi = P(yi = 1|gdppci, populationi, regime typei)
i

ŷ i = β̂0 + β̂1gdppc + β̂2pop + β̂3regime

log( ) = β̂0 + β̂1gdppc + β̂2pop + β̂3regime
p̂ i

1−p̂ i

p̂ i = Φ(β̂0 + β̂1gdppc + β̂2pop + β̂3regime)
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Regression output I: table
stargazer(m1, m2, m3, header = FALSE, type = "html", single.row=TRUE, ci=TRUE, c
          dep.var.labels.include = FALSE)

Dependent variable:

OLS logistic probit

(1) (2) (3)

gdppc -0.060*** (-0.101, -0.020) -0.551*** (-0.914, -0.188) -0.300*** (-0.497, -0.102)

pop 0.134*** (0.095, 0.172) 1.198*** (0.721, 1.675) 0.608*** (0.372, 0.843)

polity2 -0.009* (-0.019, 0.002) -0.087* (-0.174, 0.001) -0.040* (-0.088, 0.008)

Constant -1.380*** (-2.124, -0.636) -16.397*** (-24.094, -8.699) -8.239*** (-12.202, -4.277)

Observations 148 148 148

R2 0.313

Adjusted R2 0.299

Log Likelihood -53.284 -54.195

Akaike Inf. Crit. 114.568 116.391

Residual Std. Error 0.360 (df = 144)

F Statistic 21.906*** (df = 3; 144)

Note: *p<0.1; **p<0.05; ***p<0.01
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Regression output II: graph
library(dotwhisker)
dwplot(list(m1, m2, m3), conf.level = .95, show_intercept = TRUE) + 
  theme_bw() + ggtitle("Coefficient Plot")
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Prediction
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Using the model for prediction

We are often interested in predicting whether a given
observation will have a "yes" response

To do so

Use the logistic regression model to calculate the
predicted log-odds that an observation has a "yes"
response
Then, use the log-odds to calculate the predicted
probability of a "yes" response
Then, use the predicted probabilities to classify the
observation as having a "yes" or "no" response
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Calculating the predicted probability

p̂ i =
exp{β̂0 + β̂1xi}

1 + exp{β̂0 + β̂1xi}

log( ) = β̂0 + β̂1xi
p̂ i

1 − p̂ i

⇒ exp{ log( )} = exp{β̂0 + β̂1xi}
p̂ i

1 − p̂ i

⇒ = exp{β̂0 + β̂1xi}
p̂ i

1 − p̂ i

⇒ p̂ i = =
exp{β̂0 + β̂1xi}

1 + exp{β̂0 + β̂1xi}

1

1 + exp(−{β̂0 + β̂1xi})42 / 77



 vs. p̂ ˆlog-odds

p̂ i = =
exp(β̂0 + β̂1xi)

1 + exp(β̂0 + β̂1xi)

exp( ˆlog-odds)

1 + exp( ˆlog-odds)
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Predicted violence for a country

Suppose a country whose gdppc is 10, pop is 11, and
regime type is 8
Predicted log-odds that this country is high risk for
violence:

The probability this country is high risk for violence:

log( ) = −16.39683 − 0.55098 × gdppc + 1.19806 × pop − 0.086
p̂

1 − p̂

log( ) = −16.39683 − 0.55098 × 10 + 1.19806 × 11 − 0.
p̂

1 − p̂

p̂ i = = 8.093931e − 05
exp{−9.42173}

1 + exp{−9.42173}
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Predictions in R
newdf <- data.frame(gdppc = 10, pop = 11, polity2 = 8, 

vio = as.factor(0))

Predicted log-odds

predict(m2, newdf)

##         1 
## -9.421727

Predicted probabilities

predict(m2, newdf, type = "response")

##            1 
## 8.093953e-05
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Predicted probabilities with CIs
pred <- predict(m2, newdf, se.fit = TRUE) 
upr <- pred$fit + (1.96*pred$se.fit)
lwr <- pred$fit - (1.96*pred$se.fit)
fit <- pred$fit
getpro(fit);getpro(upr);getpro(lwr)

##            1 
## 8.093953e-05

##           1 
## 0.002260058

##            1 
## 2.892599e-06

Is this country high risk?

The probability the country is at risk for violence is 0.
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Visual representation of results
library(margins)
library(prediction)

predict_m2 <- prediction::prediction(m2,
            at = list(polity2 = unique(model.frame(m2)$polity2)))

summary(predict_m2)

##  at(polity2) Prediction      SE     z         p  lower  upper
##          -10     0.3972 0.08838 4.495 6.960e-06 0.2240 0.5705
##           -9     0.3850 0.08217 4.686 2.792e-06 0.2240 0.5461
##           -8     0.3729 0.07604 4.904 9.411e-07 0.2238 0.5219
##           -7     0.3608 0.07002 5.153 2.560e-07 0.2236 0.4981
##           -6     0.3489 0.06414 5.439 5.349e-08 0.2232 0.4746
##           -5     0.3371 0.05845 5.766 8.099e-09 0.2225 0.4516
##           -4     0.3254 0.05301 6.138 8.339e-10 0.2215 0.4293
##           -3     0.3138 0.04786 6.556 5.517e-11 0.2200 0.4076
##           -2     0.3024 0.04311 7.015 2.298e-12 0.2179 0.3869
##           -1     0.2912 0.03883 7.498 6.493e-14 0.2150 0.3673
##            0     0.2801 0.03516 7.967 1.624e-15 0.2112 0.3490
##            1     0.2692 0.03220 8.360 6.281e-17 0.2061 0.3323
##            2     0.2585 0.03009 8.591 8.616e-18 0.1996 0.3175
##            3     0.2481 0.02890 8.583 9.273e-18 0.1914 0.3047
##            4     0.2378 0.02863 8.306 9.881e-17 0.1817 0.2939
##            5     0.2278 0.02919 7.806 5.926e-15 0.1706 0.2850
## 6 0.2180 0.03040 7.171 7.423e-13 0.1584 0.2776
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Graphs
ggplot(summary(predict_m2), aes(x = `at(polity2)`, y = Prediction,
                                ymin = lower, ymax = upper,group = 1)) +
  geom_line() +geom_errorbar(width = 0.2) +
  theme(axis.text.x = element_text(angle = 90)) +
  labs(x = "polity score",y = "Pred. probability of violence")
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ggplot(summary(predict_m2), aes(x = `at(polity2)`)) +
    geom_line(aes(y = Prediction)) +
    geom_line(aes(y = upper), linetype = 2)+
    geom_line(aes(y = lower), linetype = 2) +
    geom_hline(yintercept = 0) +
    labs(x = "polity score",
    y = "Pred. probability of violence")
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Interaction
int1 <- glm(vio ~ gdppc + pop*polity2, data = df, family = binomial(link = "lo
library(margins)
persp(int1, "pop", "polity2", what = "prediction", type = "response")
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Panel data for logit and Probit models:
bife

Stammann, A., F. Heiss, and D. McFadden (2016). "Estimating Fixed Effects Logit Models with
Large Panel Data". Working paper.

formula must be of type y ~ x | id where the id refers to an
individual identifier (fixed effect category)

library(bife)
m1 <- glm(vio ~ gdppc + pop + polity2, data = IRdata, family = binomial(link =
m2 <- glm(vio ~ gdppc + pop + polity2, data = IRdata, family = binomial(link =
m_logit1 <- bife(vio ~ gdppc + pop + polity2 | year, model = "logit", data = I
m_probit1 <- bife(vio ~ gdppc + pop + polity2 | year, model = "probit", data =
m_logit2 <- bife(vio ~ gdppc + pop + polity2 | ccode, model = "logit", data = 
m_probit2 <- bife(vio ~ gdppc + pop + polity2 | ccode, model = "probit", data 

library(texreg)
htmlreg(list(m1, m2, m_logit1, m_probit1,  m_logit2, m_probit2))
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Results
  Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

(Intercept) -10.40*** -5.72***        

  (0.61) (0.33)        

gdppc -0.54*** -0.30*** -0.55*** -0.31*** -0.60** -0.35***

  (0.03) (0.02) (0.03) (0.02) (0.19) (0.10)

pop 0.82*** 0.45*** 0.83*** 0.46*** -0.78 -0.40

  (0.04) (0.02) (0.04) (0.02) (0.59) (0.34)

polity2 -0.04*** -0.02*** -0.03*** -0.02*** -0.08*** -0.05***

  (0.01) (0.00) (0.01) (0.00) (0.02) (0.01)

AIC 3164.32 3168.54        

BIC 3189.17 3193.39        

Log Likelihood -1578.16 -1580.27 -1566.71 -1568.82 -727.91 -729.26

Deviance 3156.32 3160.54 3133.41 3137.64 1455.82 1458.52

Num. obs. 3687 3687 3687 3687 1580 1580
***p < 0.001; **p < 0.01; *p < 0.05

Statistical models
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Panel data for logit and Probit models:
lme4

library(lme4)
mlm_1 <- lmer(gdppc ~ miliper + vio + pop + polity2 + (1 | year), data = IRdat
mlm_2 <- glmer(vio ~ gdppc + pop + polity2 + (1 | year), data = IRdata, family
mlm_3 <- glmer(vio ~ gdppc + pop + polity2 + (1 | ccode), data = IRdata, famil

htmlreg(list(mlm_1, mlm_2, mlm_3))
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Results
  Model 1 Model 2 Model 3

(Intercept) 5.53*** -10.40*** -18.46***

  (0.27) (0.61) (3.24)

miliper 1.05***    

  (0.05)    

vio -1.01***    

  (0.06)    

pop 0.09*** 0.82*** 1.49***

  (0.02) (0.04) (0.21)

polity2 0.10*** -0.04*** -0.11***

  (0.00) (0.01) (0.02)

gdppc   -0.54*** -1.10***

    (0.03) (0.13)

AIC 12670.87 3166.32 1885.68

BIC 12714.36 3197.38 1916.74

Log Likelihood -6328.44 -1578.16 -937.84

Num. obs. 3687 3687 3687

Num. groups: year 26 26  

Var: year (Intercept) 0.20 0.00  

Var: Residual 1.77    

Num. groups: ccode     156

Var: ccode (Intercept)     11.92

***p < 0.001; **p < 0.01; *p < 0.05
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Confusion Matrix

We can use the predicted probability to predict the
outcome for a given observation

In other words, we can classify the observations into
two groups: "yes" and "no"

How: Establish a threshold such that  if predicted
probability is greater than the threshold

To assess the accuracy of our predictions, we can make a
table of the observed (actual) response versus the
predicted response. This table is the confusion matrix

We can use this table to calculate the proportion of
observations that were misclassifed. This is the
misclassification rate.

y = 1

(y = 0 otherwise)
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Confusion Matrix
Suppose we use 0.3 as the threshold to classify observations

threshold <- 0.3
m_aug <- augment(m1, type.predict = "response", 
                      type.residuals = "deviance")

m_aug %>%
  mutate(risk_predict = if_else(.fitted > threshold, "Yes", "No")) %>%
  group_by(vio, risk_predict) %>%
  summarise(n = n()) %>%
  kable(format="markdown")

vio risk_predict n

0 No 2115

0 Yes 606

1 No 219

1 Yes 747

56 / 77



Confusion matrix
vio risk_predict n

0 No 2115

0 Yes 606

1 No 219

1 Yes 747

What proportion of observations were misclassified?

What is the disadvantage of relying on the confusion matrix to assess the accuracy of the model?
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Confusion matrix: 2 X 2 table
In practice, you often see the confusion matrix presented as a 2  2 table as shown below:

m_aug %>%
  mutate(risk_predict = if_else(.fitted > threshold, "Yes", "No")) %>%
  group_by(vio, risk_predict) %>%
  summarise(n = n()) %>%
  spread(risk_predict, n) %>%
  kable(format="markdown")

vio No Yes

0 2115 606

1 219 747

×
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Confusion matrix by hand

true positives (TP): These are cases in which we predicted yes, and they do happen.

true negatives (TN): We predicted no, and they don't happen.

false positives (FP): We predicted yes, but they don't actually happen. (Also known as a "Type I
error.")

false negatives (FN): We predicted no, but they actually do happen. (Also known as a "Type II
error.")
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Sensitivity & Specificity
Sensitivity: Proportion of observations with  that have predicted probability above a
specified threshold

Called true positive rate (y-axis) (also referred to as Recall)

Specificity: Proportion of observations with  that have predicted probability below a
specified threshold

(1 - specificity) called false positive rate (x-axis)

Precision: Of the relevant cases identified, how many errors were made? (i.e., how precise are my
predictions)

positive predictive value of the classifier

What we want:

High sensitivity

Low values of 1-specificity

y = 1

y = 0
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Receiver Operating Characteristic (ROC) curve
library(plotROC) #extension of ggplot2
(roc_curve <- ggplot(m_aug, aes(d = as.numeric(vio) - 1, m = .fitted)) +
  geom_roc(n.cuts = 10, labelround = 3) + 
  geom_abline(intercept = 0) + 
  labs(x = "False Positive Rate (1 - Specificity)", 
       y = "True Positive Rate (Sensitivity)") )
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Area under curve (AUC)
We can use the area under the curve (AUC) as one way to assess how well the logistic model fits the
data

 very bad fit (no better than a coin flip)

 close to 1: good fit

calc_auc(roc_curve)$AUC

## [1] 0.8394968

AUC = 0.5

AUC
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ROC and Precision-Recall curves
library(precrec)
precrec_obj <- evalmod(scores = m_aug$.fitted, labels = as.numeric(m_aug$vio) 
autoplot(precrec_obj)
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Checking Assumptions for Logit
model
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Assumptions for logistic regression

logit_m <- glm(vio ~ dem + gdppc, data = df, family = binomial(link = "logi

We want to check the following assumptions for the logistic
regression model:

Linearity: Is there a linear relationship between the log-
odds and the predictor variables?

Randomness: Was the sample randomly selected? Or can
we reasonably treat it as random?

Independence: There is no obvious relationship between
observations
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Linearity: binned residual plots

It is not useful to plot the raw residuals, so we will
examine binned residual plots

When examining binned residuals

Plot should have no discernible pattern or trend

Nonlinear trend may be indication that squared term
or log transformation of predictor variable required

If bins have average residuals with large magnitude

Look at averages of other predictor variables across
bins
Interaction may be required if large magnitude
residuals correspond to certain combinations of
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Binned plot vs. predicted values

Use the binnedplot function in the arm package.

Tip: Don't load the arm package to avoid conflicts with
tidyverse

m_aug <- augment(logit_m, type.predict = "response", 
                      type.residuals = "deviance")

arm::binnedplot(x = m_aug$.fitted, y = m_aug$.resid,
                xlab = "Predicted Probabilities", 
                main = "Binned Residual vs. Predicted Values", 
                col.int = FALSE)
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Making binned residual plot

Calculate raw residuals 

Order observations either by the values of the predicted
probabilities (or by numeric predictor variable)

Use the ordered data to create g bins of approximately
equal size. Default value: 

Calculate average residual value in each bin

Plot average residuals vs. average predicted probability
(or average predictor value)

(yi − π̂i)

g = √n
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Residuals vs. dem
Make binned plot with predictor on  axis

arm::binnedplot(x = m_aug$dem, 
                y = m_aug$.resid, 
                col.int = FALSE,
                xlab = "dem", 
                main = "Binned Residual vs. dem")

x
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Residuals vs. gdppc
arm::binnedplot(x = m_aug$gdppc, 
                y = m_aug$.resid, 
                col.int = FALSE,
                xlab = "GDPpC (Mean-Centered)", 
                main = "Binned Residual vs. gdppc")
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Residuals vs. categorical predictors

Calculate average residual for each level of the predictor
Are all means close to 0? If not, there is a problem with
model fit.

m_aug %>%
  group_by(dem) %>%
  summarise(mean_resid = mean(.resid))

## # A tibble: 3 × 2
##     dem mean_resid
##   <dbl>      <dbl>
## 1     1     -0.482
## 2     2      0.138
## 3     3     -0.224
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Randomness

Assess randomness based on a description of the data
collection

Was the sample randomly selected?
If the sample was not randomly selected, is there reason
to believe the observations in the sample differ
systematically from the population of interest?

What do you conclude about the randomness assumption for
our dataset?
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Independence

Assess independence based on a description of the data
collection

Is there an obvious relationship between observations?
This assumption is most often violated when data was
collected over time or there is a spatial relationship
between observations?

What do you conclude about the independence assumption
for our dataset?
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Checking influential values
plot(logit_m, which = 4, id.n = 3)

not all outliers are influential observations.
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# Extract model results

augment(logit_m) %>%
  mutate(index = 1:n())%>%
  top_n(3, .cooksd)

## # A tibble: 3 × 10
##     vio   dem gdppc .fitted .resid .std.resid   .hat .sigma .cooksd index
##   <dbl> <dbl> <dbl>   <dbl>  <dbl>      <dbl>  <dbl>  <dbl>   <dbl> <int>
## 1     1     3 10.9   -2.64    2.33       2.35 0.0162   1.00  0.0780     1
## 2     1     1  8.61  -0.648   1.46       1.50 0.0494   1.01  0.0348    59
## 3     1     3 10.5   -2.42    2.24       2.26 0.0154   1.00  0.0597   114
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Multicollinearity in Logit model

car::vif(logit_m )

##      dem    gdppc 
## 1.000259 1.000259

As a rule of thumb, a VIF value that exceeds 5 indicates a
problematic amount of collinearity.
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